

Air Quality in Your Hands

Manufacturer of Filtration System

www.mplusfiltration.com

The Company

Welcome to M-Plus Filtration, With 15 year of experience in air filtration products and solutions; We become a leader in the development and production of clean air solutions. We are also one of the most global air filtration specialists in the world with quality filtration systems standards product ranges.

Our plant and headquarter in Thailand. We provide customers with sustainable best in class air filtration products. We delivery value to customers all over the world while contributing to something ssential to everyone clean air for health, well-being and performace.

Our innovative filtration technology improves the performace of equipment around the world. With us, you gets a wide choice of media that you can choose what the best suits your particular environment. You won't always see our filters, But you can breathe easier knowing they're everywhrere.

ISO9001:2015

M-PLUS Filtration is accredited to ISO9001:2015. This certification is based on the plan-do-checkact methodology and provides a process-oriented approach to documenting and reviewing the structure, responsibilities, and procedures required to achieve effective quality management in an organization. Specific sections of the standard contain information on topics such as:

- Requirements for a quality management system, including documented information, planning and determining process interactions
- Responsibilities of management
- Management of resources, including human resources and an organization's work environment
- Product realization, including the steps from design to delivery
- Measurement, analysis, and improvement of the QMS through activities like internal audits and corrective and preventive action

ISO12500 series

M-PLUS Filtration's filter housings and elements has been tested the performance according international standard ISO12500 series, This standard is a new series of compressed air filter quality.

ISO 12500-1 Oil Aerosols
ISO 12500-2 Oil Vapours
ISO 12500-3 Particles
ISO 12500-4 Water

ISO8573 Part 1

M-PLUS Filtration's the group of international standards relating to the quality of compressed air and consists of nine separate parts. Part 1 specifies the quality requirement of the compressed air and Part 2-9 specify the methods of testing for a range of contaninants. In 2010, the ISO 8573-1 aur quality standard was amended in an effort to provide a more stringent air quality specifications for critical applications and the lastest revision is expressed as ISO8573-1:2010. Within ISO8573-1:2010, a number of quality classes are shown in tabular form, each specifying the maximum amount of solid particulate, water and oil allowable per cubic metre of compressed air. This document provides an introduction to ISO8573-1 the international standard for compressed air quality, purification equipment required to achieve the standards and how to apply the standard to typical applications.

IS09001

M-PLUS FILTRATION CO., LTD

Certificate Number QMS10027/1323 Since 15 Jan 2010

M-Plus Filtration's filter housings and elements performance has been tested to international

standard ISO12500 series by IBR laboratory in

Validated to ISO 12500-1:2007 Filters for Compressed Air

Test Methods - Part 1 : Oil Aerosols

ISO 12500-3:2009

Validated to ISO 12500-3:2009

Filters for Compressed Air Test Methods - Part 3 : Particulates

Reference: IRR IN 17

(BR)

US

Total contamination entering the compressed air distribution system

- Water vapour
- Condensed water
- Water aerosols

- Liquid oil
- Oil aerosols
- Oil vapour

- Atmospheric dirt
- Rust
- Pipescale

• Micro-organisms

Compressed Air Quality

Compressed air leaving an air compressor is not normally of a quality suitable for the intended use. This is due to several factors:

- Atmospheric air, especially in an industrial environment, contains particulate matter, moisture and hydrocarbons.
- The inlet filter on an air compressor is a particulate filter, designed to protect the compressor rather than downstream equipment.
- The air compressor itself will contribute contaminants in the form of wear particles and compressor oil carry-over.
- The discharge temperature from the compressor may be too high for distribution and use.
- Cooling after compression results in condensation of moisture vapor and saturated air leaving the aftercooler. Moisture has a harmful effect on pneumatic tools, air operated equipment and processes.

Applications Requiring Clean, Dry Air

Most compressed air applications require some air treatment. Following are some examples of the negative impact of moisture in a compressed air system and the reasons that applications require clean, dry air.

Moisture Related Compressed Air Problems following is a summary of some of the problems that can be caused by moisture in compressed air:

- 1. Washing away required oils.
- 2. Rust and scale formation within pipelines and vessels.
- 3. Increased wear and maintenance of pneumatic devices.
- 4. Sluggish and inconsistent operation of air valves and cylinders.
- 5. Malfunction and high maintenance of control instruments and air logic devices.
- 6. Product spoilage in paint and other types of spraying.
- 7. Rusting of parts after sandblasting.
- 8. Freezing in exposed pipelines during cold weather.

9. Further condensation and possible freezing of moisture in mufflers whenever air devices are rapidly exhausted in applications like rock drilling and mining

Compressed Air Quality Classes According to ISO8573-1:2001 (E)

ISO8573-1:2001(E) details the following classifications for specifying the purity of compressed air. Example: Compressed air to air purity class 1.2.1 (Particle removal to 0.01 micron, Water to -40 °C PDP and Oil to 0.01 mg/m³

CLASS	SOLID PARTICLES Maximum number of particles per m ³			HUMIDITY & LIQUID WATER pressure dewpoint	OIL (including aerosol, liquid & vapour)
	0.1 - 0.5 micron	0.5 - 1.0 micron	1.0 - 5.0 micron	°C	mg/m³
1	100	1	0	-70	0.01
2	100,000	1,000	10	-40	0.1
3	-	10,000	500	-20	1
4	-	-	1,000	+3	5
5	-	-	20,000	+7	-
6	-	-	-	+10	-

Why is compressed air treatment important?

Compressed Air Treatment (Dryers and Filters)

To ensure the expected performance and reliability of a compressed air system, the selection of all components within a compressed air system must be considered carefully. The increased use of compressed air and the development of many new and more sophisticated devices and controls have accelerated the need for clean, dry air. This chapter will provide information on the importance of clean, dry air and the various air treatment technologies that are available to obtain it.

For medicinal and chemical applications is better if compressed air tank is protected by internal anticorrosive paint.

Note: These are only general rules. User of the equipment must comply with all local and national pressure equipment legislation in the country of installation.

Replacement for "Atlas Copco"

M-PLUS Model	Replaces	Conn. Ø	Flow-rate (m³/min)
MAC009*	9	3/8″	0.54
MAC017*	17	1/2″	0.90
MAC032*	32	1/2″	1.92
MAC044*	44	3/4" or 1"	2.64
MAC060*	60	1″	3.60
MAC120*	120	1.1/2″	7.20
MAC150*	150	1.1/2″	9.00
MAC175*	175	1.1/2″	10.50
MAC280*	280	2 or 2.1/2"	16.80
MAC390*	390	3″	23.40
MAC520*	520	3″	31.20
MAC780*	780	FLANGE	46.80

M-PLUS Grade	Atlas Copco Grade	Atlas CopcoParticlesGraderemoval	
S	DDp/DD	1 micron	0.1 mg/m ³
х	PDp/PD	0.01 micron	0.01 mg/m ³
Z	QD	-	0.003 mg/m ³

Replacement for "Domnick Hunter (Advantage)"

M-PLUS Model	Replaces Conn. Ø		Flow-rate (m³/min)
MD009*	K009	1/4" or 3/8"	0.50
MD017*	K017	3/8" or 1/2"	1.00
MD030*	K030	1/2" or 3/4"	1.80
MD058*	K058	3/4″	3.60
MD145*	K145	1" or 1.1/2"	4.80 - 8.70
MD220*	K220	1.1/2" or 2"	12.0 - 13.0
MD330*	K330	2″	20.0
MD430*	K430	2.1/2" or 3"	24.0 - 26.0
MD620*	K620	3″	37.0

M-PLUS Grade	Domnick Hunter Grade	Particles removal	Oil carryover at 20°C
Q	PF	25 micron	-
S	AO / AR	AO / AR 1 micron	
Х	AA / AAR	0.01 micron	0.01 mg/m ³
Z	AC / ACS	-	0.003 mg/m ³

Replacement for "FRIULAIR"

M-PLUS Model	Replaces	Conn. Ø	Flow-rate (m³/min)
T*008	9	3/8″	0.54
T*012	17	1/2″	0.90
T*018	32	3/4″	1.92
T*030	44	1″	2.64
T*055	60	1.1/2″	3.60
T*080	120	1.1/2″	7.20
T*120	150	1.1/2″	9.00
T*160	175	2″	10.50
T*250	280	2.1/2″	16.80
T*400	390	3″	23.40
F*220	520	FLANGE	31.20
M-PLUS Grade	FRIULAIR Grade	Particles removal	Oil carryover at 20°C
Р	Р	3 micron	-
S	S	1 micron	0.1 mg/m ³
Х	Х	0.01 micron	0.01 mg/m ³
Z	Z	-	0.003 mg/m ³

Replacement for "HIROSS"

M-PLUS Model	Replaces Conn. Ø		Flow-rate (m³/min)
MH004*	004	3/8″	0.4
MH007*	007	3/4″	0.7
MH015*	015	3/4″	1.5
MH024*	024	1"	2.4
MH035*	035	1.1/2″	3.5
MH060*	060	1.1/2″	6.0
MH090*	090	2″	9.0
MH120*	120	2″	12.0
MH150*	150	2″	15.0
MH240	240	DN65	24.0
M-PLUS Grade	HIROSS Grade	Particles removal	Oil carryover at 20°C

Grade	Grade	removat	
Р	Q/D	Q/D 3 micron	
S	Р	1 micron	0.1 mg/m ³
Х	S	0.01 micron	0.01 mg/m ³
Z	С	-	0.003 mg/m ³

Replacement for "HANKISON (HF series)"

M-PLUS Model	Replaces	Conn. Ø	Flow-rate (m³/min)
MHK*-12	12	3/8″	0.58
MHK*-16	16	1/2″	1.0
MHK*-20	20	1/2″	1.75
MHK*-24	24	3/4″	2.83
MHK*-28	28	1″	4.83
MHK*-32	32	1.1/2″	7.08
MHK*-36	36	1.1/2″	10.66
MHK*-40	40	2″	13.75
MHK*-44	44	2.1/2″	17.66
MHK*-48	48	2.1/2	22.08
MHK*-54	54	DN80	28.33
MHK*-PV	PV	DN100+	18.50

M-PLUS Grade	HANKISON Particles Grade removal		Oil carryover at 20°C
PP	E11 10 micron		_
Р	E9	3 micron	5 mg/m ³
S	E7 / E6	1 micron	0.1 mg/m ³
Х	E5 / E3	0.01 micron	0.01 mg/m ³
Z	E1	-	0.003 mg/m ³

Replacement for "SWAN / bea"

M-PLUS Model	Replaces	Conn. Ø	Flow-rate (m³/min)
MARS30*	*30	1/4″	0.5
MARS100*	*100	1/2″	1.8
MARS180*	*180	3/4″	3.1
MARS290*	*290	1″	5.0
MARS460*	*460	1.1/2″	11.7
MARS610*	*610	2″	16.7
MARS930*	*930	2.1/2"	20.0
MARS1050*	*1050	*1050 3″	
MARS1400*	*1400	*1400 3"	
M-PLUS Grade	SWAN / bea Grade	Particles removal	Oil carryover at 20°C
Q	ARM	10 micron	-
S	ARF	1 micron	0.1 mg/m ³
А	ARB	ARB 0.1 micron	
x	ARA	ARA 0.01 micron	
Z	ACA	-	0.003 mg/m ³

Replacement for "SMC"

M-PLUS Model	Replaces		Conn. Ø	Flow-rate (m³/min)
MEL*-150	*-EL150	AFF-EL2B	3/8″	0.2 - 0.3
MEL*-250	*-EL250	AFF-EL4B	1/2″	0.5 - 0.8
MEL*-350	*-EL350	AFF-EL8B	3/4″	1.0 - 1.5
MEL*-450	*-EL450	AFF-EL11B	1″	2.0 - 2.2
MEL*-550	*-EL550	AFF-EL22B	1″	3.5
MEL*-650	*-EL650	AFF-EL37B	1.1/2″	6.0
MEL*-850	*-EL850	AFF-EL75B	2″	12.0

M-PLUS Grade	SMC Grade	Particles removal	Oil carryover at 20°C	
Q	AMG	25 micron	-	
Р	AFF	3 micron	-	
S	AMD / AM	1 mcron	0.1 mg/m ³	
Х	AME / AMH	0.01 micron	0.01 mg/m ³	
Z	AMF	-	0.003 mg/m ³	

Replacement for "Donaldson Ultrafilter"

M-PLUS Model	Replaces	Conn. Ø	Flow-rate (m³/min)	
MU*02/05	*02/05	1/4″	0.3	
MU*03/05	*03/05	3/8″	0.7	
MU*03/10	*03/10	3/8″	1.0	
MU*04/10	*04/10	1/2″	1.5	
MU*04/20	*04/20	1/2″	2.0	
MU*05/20	*05/20	3/4″	3.0	
MU*05/25	*05/25	1″	4.5	
MU*07/25	*07/25	1.1/4″	6.0	
MU*07/30	*07/30	1.1/2″	8.0	
MU*10/30	*10/30	2″	12.0	
MU*15/30	*15/30	2″	18.0	
MU*20/30	*20/30	2.1/2″	24.0	
MU*30/30	*30/30	3″	32.0	
MU*30/50	*30/50	3″	48.0	

M-PLUS Grade	Donaldson Grade	Particles removal	Oil carryover at 20°C		
Q	PE	25 micron	-		
Р	SB	5 micron	-		
S	FF	0.01 micron	0.1 mg/m ³		
А	MF	0.01 micron	0.03 mg/m ³		
Х	SMF	0.01 micron	0.01 mg/m ³		
Z	AK	-	0.003 mg/m ³		

Replacement for "ORION"

M-PLUS Model	Replaces	Conn. Ø	Flow-rate (m³/min)	
MO*400	*400	1″	3.7	
MO*700	*700	1.1/2″	6.2	
MO*1000	*1000	1.1/2″	10.0	
MO*1500	*1500	2" or 2.1/2"	13.0 - 24.4	
M-PLUS Grade	ORION Grade	Particles removal	Oil carryover at 20°C	
S	EL	1 micron	0.1 mg/m ³	
х	EM	0.01 micron	0.01 mg/m ³	
Z	EK	_	0.003 mg/m ³	

Replacement for "ORION (Super filter)"

M-PLUS Model	Replaces	Conn. Ø	Flow-rate (m³/min)			
MOR*75C	*75	75 3/8"				
MOR*150C	*150	1/2″	1.2			
MOR*200C	*200	3/4″	1.8			
MOR*400C	*400	1″	3.9			
MOR*700C	*700	1.1/2″	6.6			
MOR*1000C	*1000	1.1/2″	10.6			
MOR*1300C	*1300	2″	13.8			
MOR*2000C	*2000	2″	20.0			
M-PLUS Grade	ORION Grade	Particles removal	Oil carryover at 20°C			
Р	EDS	5 micron	-			
S	ELS	1 micron	0.1 mg/m ³			
х	EMS	0.01 micron	0.01 mg/m ³			
7	FKS	_	0.003 mg/m ³			

Replacement for "ZANDER"

M-PLUS Model	Replaces	Conn. Ø	Flow-rate (m³/min)	
MZ1030*	MZ1030*	1/4″	0.5	
MZ1050*	MZ1050*	1/4″	0.8	
MZ1070*	MZ1070*	3/8″	1.2	
MZ1140*	MZ1140*	1/2″	1.7	
MZ2010*	MZ2010*	3/4″	3.0	
MZ2020*	MZ2020*	1"	5.0	
MZ2030*	MZ2030*	1.1/2″	7.8	
MZ2050*	MZ2050* 1.1/2"		11.7	
MZ3050*	MZ3050*	2"	15.7	
MZ3075*	MZ3075*	2″	24.2	
MZ5060*	MZ5060*	2.1/2″	32.3	
MZ5075*	MZ5075*	3"	40.0	

M-PLUS Grade	ZANDER Grade	Particles removal	Oil carryover at 20°C	
Р	V	3 micron	-	
S	ZP	1 micron	0.1 mg/m ³	
Х	ХР	0.01 micron	0.01 mg/m ³	
V	XP4	0.01 micron	0.001 mg/m ³	
Z	А	-	0.003 mg/m ³	

Oil Separators for Vacuum pumps

M-Plus Filtration is a leading manufacturer of filter element and vacuum pump separator technology supplying one of the most comprehensive ranges on the market today. Our products are designed to offer the best performance in a range of applications including industrial, laboratory and medical.

We believe in continual development of the highest quality filtration products, capable of the very highest performance. With our in-house experience and expertise, we continually research and develop new technologies to improve filtration techniques and media advances in order to enhance product performance. This ensures that the M-Plus Filtration product is the best available.

In a recent development M-Plus Filtration has improved its vacuum products further by enhancing the media used on their full range of alternative air/ oil separators. This has been achieved by the joint development of a proprietary new borosilicate glass fibre media which will be used in conjunction with a new coalescing outer sleeve material. The contents of the exhaust is approx 1 to 3mg/m³ depends on oil values and other factors, the service life at nominal operation is 1,500 to 2,000 operating hours.

Our related oil separator filters for vacuum pumps:-

- Becker
- Busch
- Leybold
- Mils
- PVR Rotant
- Rietschle

We also can manufacture customised product for you.

Air and Oil filters

We supply filters for Industrial applications. At present we have over 2000 different oil, air, fuel and hydraulic filters in our range with more being developed on a continuous basis. If you require a specific filter or filters not currently available from us we can manufacture a new filter to meet your requirements.

Our filters are supplied to both OEM and aftermarket customers around the world. With the latest technology, we also supply various types of the new generation ecological oil, air and fuel filters. These new types of metal-free filters are more environment-friendly than the old types of filters that cause waste disposal problems all around the world.

- Oil Filters
- Air Filters
- Fuel Filters
- Suction Filters
- Gas Filters

Air Pollution Control Filters

Industrial dust & fume collections

Wide variety of filter media and filter material for dust types.

Filter media code	Features & Benefits	Applications	Efficiency	
GD62	Blended cellulose media contains 20% PET fibers with water repellent and flame retardant treatment for a long service life.	 General dust collector Gas turbine intake air filters Powder coating Dry dust collector 	Efficiency Class : M6 according to EN779-2012 (>65% @0.4 micron)	
GD70	Blended of high strength synthetic fibers coat- ed with electrospun Nanofibers. This structure results in excellent reverse-pulsing behavior and high mechanical efficiency at the lowest possible pressure drop for a longer life. It also with water repellent and flame retardant treatment respecting F1 request (DIN53438)	 Laser/Plasma cutting Welding Grinding Pulsing dust collector 	Efficiency Class : F9 according to EN779-2012 (>95% @0.4 micron)	
TR21	High performance composite media with new technologies combined of fine fibers, long fibers, various binder fibers. Much more filter area with no filtration dead, Low pressure drop for a continous cycling. Washable: Yes	 Wet dust collector Gas turbine intake air filters (High humidity) Powder coating Blasting filters Chemical/Mineral Pool filters 	Efficiency Class : F7 according to EN779-2012 (>85% @0.4 micron)	
PF26	Polyester spunbond media. For a high strenght and moist condition. Washable: Yes	 Cement/Mineral Plastic Chemicals Powder coating 	Efficiency Class : M6 according to EN779-2012 (>65% @0.4 micron)	
PF26F3	Polyester spunbond media with PTFE coated Washable: Yes	Paper industryWoodworkingChemicals	Efficiency Class : E10 according to EN1822 (95% @0.3 micron)	
PF26LF3	Polyester spunbond media with PTFE coated and antistatic Washable: Yes	 Paper industry Woodworking Chemicals Food&Beverage 	Efficiency Class : E10 according to EN1822 (95% @0.3 micron)	
PF26F4	Polyester spunbond media with ePTFE membrane coated. For a high filtration efficiency or dust cake release requirement. Washable: Yes	ChemicalsFood&Beverage	Efficiency Class : H13 according to EN1822 (99.9% @0.3 micron)	

Medical Vacuum Filters | MV series

M-Plus Filtration manufacture a comprehensive range of medical vacuum filters for centralized hospital vacuum plant installations as specified in the UK standard HTM02-01*.

The M-Plus ranges of medical vacuum filters are designed to protect these installations from liquid, solid and bacterial contamination. Liquids are collected in a transparent drain flask which can be easily removed for sterilization.

Manual drain valves are fitted to all models.
 Sterilisable glass drain flasks are supplied as standard

- 100ml for models MV020 to MV120
- 150ml for models MV185 to MV335
- 250ml for models MV420 to MV500

Corrosion Protection

M-PLUS filter housing adopts aluminium alloy die-cast, have tight construction and long time use. The internal and external of housing undergo cleaning, degreasing, anodic oxidation treatment before painting. Increasing anti-corrosion and durability.

*HTM02-01 is Health Technical Memorandum 02-01 : Medical gas pipeline systems

Filter elements

Performance guarantee

We use high efficiency borosilicate glass microfibre media to remove all dirt particles. All elements include stainless steel metalwork and are fitted with an external pre filter layer of 80 p.p.i., open cell reticulated polyester foam. These filters are a proven success and now include such features as differential pressure indicators which are a specific requirement of the HTM02-01 medical gas pipeline specification.

Filter Models MV020-MV500 incorporates the unique M-Plus designed 'push-on' filter element. This reduces maintenance time and allows the filter to be located in the most confined spaces.

The efficiency of the installed filter elements exceeds the 0.005% penetration specified in HTM02-01 for infectious disease unit, when tested in accordance with BS3928.

Technical Specifications

Model	IN-OUT	Free at a	Air Cap tmosph	acity eric	Rarified Air Capacity at 500mm Hg Vacuum			Dimensions (mm)				Weight	Element
	Ø	Nl/min	Nm³/hr	SCFM	Nl/min	Nm³/hr	SCFM	А	В	С	D	(Kg)	model
MV020	G 1/2″	200	12	7	600	36	21	194	89	60	120	1.1	EV020
MV055	G 3/4″	550	33	19	1,650	99	58	251	120	100	120	2.4	EV055
MV120	G 1″	1,200	72	42	3,600	216	126	351	120	100	120	2.9	EV120
MV185	G 1.1/2″	1,850	111	65	5,550	333	195	351	120	100	150	3.1	EV185
MV275	G 2″	2,750	165	96	8,250	495	288	441	162	109	150	6.6	EV275
MV335	G 2″	3,350	201	118	10,050	603	354	770	162	109	150	10.8	EV335
MV420	G 3″	4,200	252	147	12,600	756	440	509	200	123	200	12.5	EV420
MV500	G 3″	5,000	300	177	15,000	900	531	786	200	123	200	17.5	EV500

Specifications					
Particle removal efficiency	>99.995% @ 0.01 micron				
	HTM 02-01 specifies >99.995% in accordance with BS 3928 Test particle size: 0.02 to 2 micron				
Maximum temperature	80°C (1	А			
Minimum temperature	1.5°C (3	34.7°F)			
Pressure loss - clean & dry	≤3 kPa	(30 mbar / 0.44 psi)			
Maximum working pressure	7 barg	100 psig			
Maximum working vacuum	Full vacuum				
Element end cap	Black				
Flow direction	Outside to inside				
Element changed	At least 6	months			

In factories, Compressed air must be

FREE OF WATER

Bulk water can be found in all compressed air systems. This can be very costly, resulting in corrosion, damage to tools and machinery downtime.

The best solution to remove the condensation generated during the compression process.

Water Separator Filter (Cyclone filter) | MWS series

Features of our product

- Eliminating 99% of bulk water
- Continiously LOW diffential pressure
- Cost-saving
- No maintenance, Element is unnecessary
- Stainless steel cyclone blade (screw type)
- Patent product proved by practice
- High grade aluminum-silicon (screw type) and carbon-steel cartridge (flange type)
- Water and corrosion resistance surface overed with epoxy resin

(Screw type)

Applications

- Automotive
- Electronics
- Food and beverage
- ChemicalPetrochemical
- Petroche
 Plastics
- Plasti
 Paint
- General industrial applications

Technical Specifications

- Working conditions: Maximum operating temperature 120°C (248°F)
- Minimum operating temperature 2°C (36°F)
- Maximum operating pressure 16 barg (screw type); 10 barg (flange type)

(MWS0020 - MWS0260)

(MWS0700F - MWS7200F)

Connection			Flow-Rate			Dim	ensions	(mm)	Weig	ht STD.	Drainage
Model	Ø	Nl/min	Nm	n³/hr	SCFM	А	В	С	(Kgs)	(r	nodel)
MWS 0020	G 1/2″	1,700	1	02	60	217	26	104	1.2		
MWS 0040	G 1″	3,500	2	10	124	287	26	104	1.5	Au	tomatic drain
MWS 0070	G 1-1/2″	7,100	4	26	251	385	39	138	3.0	(A	D402)
MWS 0110	G 1-1/2″	10,600	6	36	374	585	39	138	3.6		
MWS 0140	G 2″	13,800	8	28	487	639	46	148	9.5		
MWS 0180	G 2″	17,500	1,(050	618	779	46	148	11.8	Ele tim	ectronic er drain
MWS 0220	G 2-1/2″	22,100	1,3	326	780	800	50	150	12.0) (5	SCE02)
MWS 0260	G 2-1/2″	26,000	1,5	560	918	1,000	50	150	13.6		
MWS 0700F	FLG. 2.5"	42,000	2,5	520	1,483	713	195	380	30.0		
MWS 0800F	FLG. 3"	50,000	3,0	000	1,766	713	195	380	31.0		
MWS 1000F	FLG. 4"	60,000	3,6	500	2,119	913	230	449	92.0	Ele	ectronic
MWS 1300F	FLG. 5"	80,000	4,8	300	2,825	1,141	263	493	145.0	tim	er drain
MWS 1800F	FLG. 6"	120,000	7,2	200	4,238	1,210	301	545	160.0	2 (2	(CLUL)
MWS 3000F	FLG. 8"	180,000	10,	800	6,357	1,423	361	750	348.0	2 C	
MWS 4800F	FLG. 10"	288,000	17,	280	10,171	1,250	410	740	510.0	2 C	
MWS 7200F	FLG. 12"	432,000	25,	920	15,256	1,269	485	1,000	662.0	D C	
				1							
Presssure (psi)			43	71	100	128	3 1	56	185	213	228
Pressure (bar)			3	5	7	9		11	13 15		16
Correction fac	tor		0.65	0.85	1.00	1.1	3 1	.25	1.36 1.46		1.51

Line filters

Compressed Air Filters | MP series

A comprehensive range of thread filters with 8 models offering connections from 1/2" to 2.1/2" or requirement and capacities up to 26 Nm³/min (918 CFM).

Features of our product

- Extended current route to decrease pressure drop
- High grade aluminum-silicon cartridge
- Water and corrosion resistance surface covered with epoxy resin
- Combined inlet and outlet with screw threads for easy installation
- Various compact designs to fit different pipe sizes
- Reliable automatic drainage
- 6 filtration grades (40 0.01 micron) or specific filter elements* *on customer request

Do surface treatment OK No surface treatment NG

Furthermore, we adopted an advance technology of surface treatment used in the production precess of our filter housing, both internal and external components, which can assure extended usage period.

Accessories

Ì

• External float drain (HAD20B) is fitted to model s MP0140 - MP0260 as standard.

PURE AIR M-PLUS

Filter elements Performance guarantee

All M-PLUS compressed air filters carry a guarantee for one year under normal recommended use. The filter elements should be changed at least 12 months (6 months for activated carbon filter).

More filter media, more efficeincy...

M-PLUS's filter elements increased performance to aerosol removal efficiency with deep bed filter media that improved filter area for high oil removal efficiency on lifetime.

- Perforated stainless steel cylinders and extreme bonding, provide corrosion resistance and elements strenght.
 - **Outer drainage layer**, high tensile strenght and withstands temperatures up to 120°C

Filter Grade	R	Q	Р	S	X	Z			
Particle removal	40 micron	25 micron	5 micron	1 micron	0.01 micron	-			
Maximum particle size class to ISO8573-1:2010	-	-	4	3	1	-			
Maximum oil content	-	-	4	3	1	1			
Maximum oil carry over at 20°C	-	10 mg/m ³	5 mg/m ³	0.1 mg/m ³	0.01 mg/m ³	0.003 mg/m ³			
Pressure loss: clean and dry	-	30 mbar (0.4 psi)	40 mbar (0.6 psi)	75 mbar (1.1 psi)	100 mbar (1.5 psi)	75 mbar (1.1 psi)			
Pressure loss: saturated	55 mbar (0.8psi)	50 mbar (0.7 psi)	75 mbar (1.1 psi)	150 mbar (2.2 psi)	300 mbar (4.4 psi)	-			
Element changed	8000 hours / 12 months (Washable)	8000 hours / 12 months 1000 hours 6 months							
Flow direction	Outside to In	Inside to Out							

Technical Specifications

Working conditions:

- Maximum operating temperature 120°C (248°F)
- Minimum operating temperature 2°C (36°F)
- Maximum operating pressure 228 psig (16 barg)

	Connection		Flow-Rate		Dim	ensions (mm)	Weight	Element
Model	Ø	Nl/min	Nm³/hr	SCFM	А	В	С	(Kgs)	Model
MP0020*	G 1/2″	1,700	102	60	243	217	104	1.2	P0020*
MP0040*	G 1″	3,500	210	124	313	287	104	1.5	P0040*
MP0070*	G 1.1/2″	7,100	426	251	385	424	138	3.0	P0070*
MP0110*	G 1.1/2″	10,600	636	374	585	624	138	3.6	P0110*
MP0140*	G 2″	13,800	828	487	685	639	148	9.5	P0140*
MP0180*	G 2″	17,500	1,050	618	825	779	148	11.8	P0180*
MP0220*	G 2.1/2″	22,100	1,326	780	850	800	150	12.0	P0220*
MP0260*	G 2.1/2″	26,000	1,560	918	1,000	950	150	13.6	P0260*

Presssure (psi)	29	43	57	71	85	100	114	128	142	156	171	185	199	213	228
Pressure (bar)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Correction factor	0.36	0.50	0.63	0.75	0.88	1.00	1.13	1.25	1.38	1.50	1.63	1.75	1.88	2.00	2.13

Technical notes

1) Internal float drain (MI01) is fitted on models MP0020 - MP0110 as standard.

2) External float drain (HAD20B) is fitted on models MP0140 - MP0260 as standard.

3) Activated carbon must not operate in oil saturated confitions and will not remove certain types of gases including carbon monoxide (CO) and carbon dioxide (CO₂).

Compressed air filters 'MP' | 21

Compressed Air Flange Filters MT series

A comprehensive range of flange filters with 5 models offering connections from 3" to 6" or requirement and capacities up to 200 Nm³/min (7,063 CFM).

Features of our product

- Easy to change element from top flange
- High grade carbon-steel cartridge or Stainless steel* • Water and corrosion resistant surface covered with
- epoxy resin (Inside & Outside) • 6 filtration grades (40 - 0.01 micron) or specific filter elements*
- Level indicator to monitor the critical level of downstream pollution prevention
- Reliable automatic drainage (Floating drain as standard or eletronic timer drain as optional)
- Can provide as customer required

MT housings, Guaranteed for 10-years life The internal and external of housing undergo cleaning, degreasing, anodice oxidation treatment before painting. Increasing anti-corrosion and durability.

*on customer request

For the filter housing under normal recommended use. The high quality traceable pressurised components ensure peace of mind and trouble free use.

WARRANT

22 | Compressed air fitlers 'MT'

Filter elements

Performance guarantee

All M-PLUS Superfine compressed air filters carry a guarantee for one year under normal recommended use. The filter elements should be changed every year (8,000 hours) or earlier if the indicator/gauge changes to red. Activated carbon filter elements (grade Z) should be changed every 6 months or 1000 hours (whichever comes first).

Filter Grade	R	Q	Р	S	X	Z	
Particle removal	40 micron	25 micron	5 micron	1 micron	0.01 micron	-	
Maximum particle size class to ISO8573-1:2010	-	-	4	3	1	-	
Maximum oil content	-	-	4	3	1	1	
Maximum oil carry over at 20°C	-	10 mg/m ³	5 mg/m ³	0.1 mg/m ³	0.01 mg/m ³	0.003 mg/m ³	
Pressure loss: clean and dry	-	30 mbar (0.4 psi)	40 mbar (0.6 psi)	75 mbar (1.1 psi)	100 mbar (1.5 psi)	75 mbar (1.1 psi)	
Pressure loss: saturated	55 mbar (0.8psi)	50 mbar (0.7 psi)	75 mbar (1.1 psi)	150 mbar (2.2 psi)	300 mbar (4.4 psi)	-	
Element changed	8000 hours / 12 months (Washable)	8000 hours / 12 months					
Flow direction	Now direction Outside to In Inside to Out						

Technical Specifications

Working conditions:

- Maximum operating temperature 80°C (176°F)
- Minimum operating temperature 2°C (36°F)
- Maximum operating pressure 174 psig (12 barg)

	Connection		Flow-Rate		Dim	Weight	Filter Element		
Model	Ø	Nl/min	Nm³/hr	SCFM	А	В	С	(Kgs)	(No. x Model)
MT0450F*	FLG. 3"	45,000	2,700	1,589	1118	336	908	86	1 x ET680*
MT0550F*	FLG. 4"	55,000	3,300	1,942	1131	550	935	119	3 x ET680*
MT0950F*	FLG. 5"	95,000	5,700	3,355	1250	600	930	148	5 x ET680*
MT1300F*	FLG. 6"	130,000	7,800	4,591	1380	660	1006	204	6 x ET780*
MT2000F*	FLG. 6"	200,000	12,000	7,063	1400	942	963	317	11 x ET680*

А

Presssure (psi)	29	43	57	71	85	100	114	128	142	156	171
Pressure (bar)	2	3	4	5	6	7	8	9	10	11	12
Correction factor	0.36	0.50	0.63	0.75	0.88	1.00	1.13	1.25	1.38	1.50	1.63

Technical notes

1) Direction of air flow is inside to out through the filter element.

2) Pipe differential pressure gauge (PG02) is an optional.

3) External float drain (HAD30B) is standard on all models.

4) Activated carbon must not operate in oil saturated confitions and will not remove certain types of gases including carbon monoxide (CO) and carbon dioxide (CO₂).

Compressed Air Filters | MS series

In today's modern production equipments, the use of compressed air is so important to manufacturing processes. Irrespective of whether the compressed air comes into direct contact with the product or is used to automate a process, provide motive power, or even to generate other gases on-site, a clean, dry. Reliable compressed air supply is essential to maintain cost effective production.

Typically there are different conta-minations from the below sources and even more in critical applications that need to be removed or reduces to acceptable levels. Such as: Atmospheric dirt, Water vapour, Oil vapour and Micro-organisms.

Die-cast filter housing

M-PLUS filter housing adopts aluminium alloy die-cast, have tight construction and long time use. The internal and external of housing undergo cleaning, degreasing, anodic oxidation treatment before painting. Increasing anti-corrosion and durability.

The comparison of anti-corrosion treatment

For the filter housing under normal recommended use. The high quality traceable pressurised components ensure peace of mind and trouble free use.

Accessories benefits

(1/2'').

Pressure relief hole gives an audible warning if any attempt is made to remove filter bowl whilst under pressure.

Maintenance simple and quick.

is fitted as standard on filters MS020 is fitted as standard on filters MS040

(3/4") and larger.

Manual drain (SD02) valve is fitted as standard on filter MS040 (3/4") and larger for rapid depressurisation and autodrain function check.

Sight glass (SG01) gives a visual check of liquid collection and drain function.

Automatic drain (SD01) valve is fitted Automatic float drain (HAD20B) is fitas standard on filters MS020 $(\frac{1}{2})$ to ted as standard on filters MS130 (2)MS070 (1¹/₂").

and larger

Filter elements Performance guarantee

All M-PLUS Superfine compressed air filters carry a guarantee for one year under normal recommended use. The filter elements should be changed every year (8,000 hours) or earlier if the indicator/gauge changes to red. Activated carbon filter elements (grade Z) should be changed every 6 months or 1000 hours (whichever comes first).

Filter Grade	R	Q	Р	S	Х	Z
Particle removal	40 micron	25 micron	5 micron	1 micron	0.01 micron	-
Maximum particle size class to ISO8573-1:2010	-	-	4	3	1	-
Maximum oil content	-	-	4	3	1	1
Maximum oil carry over at 20°C	-	10 mg/m ³	5 mg/m ³	0.1 mg/m ³	0.01 mg/m ³	0.003 mg/m ³
Pressure loss: clean and dry	-	30 mbar (0.4 psi)	40 mbar (0.6 psi)	75 mbar (1.1 psi)	100 mbar (1.5 psi)	75 mbar (1.1 psi)
Pressure loss: saturated	55 mbar (0.8psi)	50 mbar (0.7 psi)	75 mbar (1.1 psi)	150 mbar (2.2 psi)	300 mbar (4.4 psi)	-
Element changed	8000 hours / 12 months (Washable)		8000 hours ,	/ 12 months		1000 hours / 6 months
Flow direction	Outside to In			Inside to Out		
Element end cap colour	Black	Black	Green	Red	Yellow	Black

Technical Specifications

В

Clearance to change element

MS020

С

А

D

	Connection		Flow-Rate		D	imensi	ons (mr	n)	Weight	Filter Element
Model	Ø	Nl/min	Nm³/hr	SCFM	А	В	С	D	(Kgs)	(No. x Model)
MS020*	G 1/2″	2,000	120	71	194	89	60	130	1.1	1 x SE020*
MS040*	G 3/4″	3,600	216	127	251	120	100	172	2.4	1 x SE040*
MS050*	G 1″	4,800	288	170	351	120	100	272	2.9	1 x SE050*
MS070*	G 1.1/2″	8,700	522	307	351	120	100	272	3.1	1 x SE070*
MS130*	G 2″	13,800	828	487	441	162	109	320	6.6	1 x SE130*
MS200*	G 2″	20,800	1,248	735	770	162	109	625	10.8	1 x SE200*
MS260*	G 3″	27,000	1,620	954	509	200	123	400	12.5	1 x SE260*
MS370*	G 3″	38,000	2,280	1,342	786	200	123	625	17.5	1 x SE370*

Presssure (psi)	29	43	57	71	85	100	114	128	142	156	171
Pressure (bar)	2	3	4	5	6	7	8	9	10	11	12
Correction factor	0.36	0.50	0.63	0.75	0.88	1.00	1.13	1.25	1.38	1.50	1.63

Standard Accessories												
Accessories Filter model (Conn. size)	Differential Pressure Indicator (SPI01)	Differential Pressure Gauge (SPG01)	Automatic Internal Float Drain (SD01)	Automatic External Float Drain (HAD20B)	Manual Drain (SD02)	Sight Glass (SG01)						
MS020 (G 1/2")	. ✓		\checkmark			✓						
MS040 (G 3/4")		✓	\checkmark		✓	✓						
MS050 (G1")		\checkmark	\checkmark		✓	✓						
MS070 (G 1.1/2")		✓	✓		✓	✓						
MS130 (G 2")		✓		✓	✓	✓						
MS200 (G 2")		\checkmark		✓	\checkmark	✓						
MS260 (G 3")		\checkmark		✓	\checkmark	✓						
MS370 (G 3")		\checkmark		✓	\checkmark	✓						

High Pressure 40BARG | MHP

The strong mechanical resistance makes this filter the ideal initial protection of a compresed air system to retain impurities and, for example, it is suitable as a post-filter for adsorption dryer.

EL	EMENT FILTER GRADES
С	Cyclone type condensate separators. Downstream of an air compressor/Booster/After cooler/Receiver
Q	Filter capable to separate emulsion and particles down to 25 micron.
Ρ	Filter capable to separate emulsion and particles down to 3 micron.
S	Filter capable to separate emulsion and particles down to 1 micron. Maximum contents of residual oil 0.1 mg/m ³ .
x	Oil removing filter capable to separate residual oil and extremely small par- ticles down to 0.01 micron. Maximum contents of residual oil 0.01 mg/m ³ .
z	Activated carbon filter for the elimination of oil vapours and odour. When installed, before X grade filter, It lowers the maximum contents of residual oil 0.003 mg/m ³ .

Technical Specifications

Max.inter air temperature 100°C (60°C on Z)

Ambient temperature: 25°C Working pressure: 40bar Inlet air temperature: 20°C

	Connection		Flow	-Rate @4	0BAR			Dimen	sions (m	im)	Weight	Filter	Element
Model	Ø	Nl/mi	in	Nm³/hr	SCF	M	А	В	С	D	(Kgs)	(No. x	Model)
MHP0075	G 1″	12,50	0	750	44	1	435	120	36	170	2.8	1 x Mł	HE0075*
MHP0150	G 1″	25,00	0	1,500	88	3	435	120	36	170	2.8	1 x Mł	HE0150*
MHP0250	G 1.1/2″	41,66	7	2,500	1,47	71	435	120	36	170	2.8	1 x Mł	HE0250*
MHP0400	G 2″	66,66	7	4,000	2,35	54	705	170	52	170	7.5	1 x Mł	HE0400*
MHP0500	G 2″	83,33	3	5,000	2,94	43	705	170	52	170	7.7	1 x Mł	HE0500*
MHP0650	G 2.1/2″	108,33	33	6,500	3,82	26	755	200	68	170	12.2	1 x Mł	HE0650*
MHP1000	G 3″	166,66	57	10,000	5,88	36	1035	200	68	170	15.7	1 x Mł	HE1000*
MHP1350	G 3″	225,00	00	13,500	7,94	46	1035	200	68	170	15.8	1 x Mł	HE1350*
Pressure (bar)			7	10	13	16	5	20	24	28	32	36	40
Correction fact	r		0.20 0.27 0.35 0		0.4	2	0.52	0.61	0.71	0.81	0.90	1.00	

Oil Mist Eliminator Compressed Air Filters | MEL series

Extra protection compressed air quality from piston or oil flooded air compressors/oil separator failure.

Designed to provided the excellent filtration and low pressure drop of 0.5 to 1 psid.

Features of our product

- LONG LIFE SERVICE
- LOW PRESSURE DROP
- CAPTURES LARGE SLUGS OF OIL
- PROTECTS DOWNSTREAM EQUIPMENT

Mist Eliminator Elements

A fiber bed design innovation is the addition of a second more coarse fiber layer on the downstream side. This additional layer expedites drainage and prevents reentrainment of the liquid back into the gas/air stream

- Removal of particles down to 0.01 micron including coalesced liquid water and oil providing a maximum remaining oil aerosol content of 0.01 ppm
- 5 years element warranty
 Extended element life 10
- Extended element life 10 years in normal use

Technical Specifications

	IN-OUT		Flow-rate			Dimensio	ons (mm)		Pressure	Element
Model	Ø	Nl/min	Nm³/h	SCFM	A	В	с	D	bar (max)	model
MEL0150	2" FLG.	4,250	255	150	500	1,060	430	170	14	EM0150
MEL0300	2" FLG.	8,500	510	300	500	1,160	530	170	14	EM0300
MEL0600	2" FLG.	17,000	1,020	600	500	1,520	840	170	14	EM0600
MEL0800	3" FLG.	22,650	1,359	800	500	1,705	1,010	250	14	EM0800
MEL1200	3" FLG.	34,000	2,040	1,200	600	1,605	910	250	14	EM1200
MEL1600	3" FLG.	45,300	2,718	1,600	600	1,705	1,010	250	14	EM1600
MEL2100	4" FLG.	59,500	3,570	2,100	700	1,670	910	300	14	EM2100
MEL2750	4" FLG.	77,900	4,674	2,750	700	1,770	1,010	300	14	EM2750
MEL4200	6"FLG.	119,000	7,140	4,200	800	1,755	860	350	14	EM4200
MEL6000	6" FLG.	170,000	10,200	6,000	800	2,005	1,110	350	14	EM6000

Technical notes

1) Pipe differential pressure gauge (PG02) fitted as standard.

2) External float drain (HAD30B) fitted as standard.

3) Filter element change out differential 2.5 psid.

-PLUS

> Refrigeration dryer is the most

worldwide used

- Cost-effective technology
- Low pressure loss
- Intelligent control
- Reliable system

We are make a dry air

Our air dryer plant was established in 1989 in Italy and in just over 10 years became a leading international company in the production of dryers, filters, aftercoolers and accessories for the treatment of compressed air.

Quality, versatility, respect for the environment and reliability are the characteristics of all our products. The wealth of experience found in company departments, and strict intermediate/final inspections carried out with the most advanced equipment, are the company's distinguishing features.

Our designs, develops and sells a wide range of products for the treatment of compressed air and industrial refrigeration with professionalism and commitment.

Research & Development

The test workshop in the compressed air department was recently modernised and extended, whereas the test workshop in the water treatment department is brand new.

The dryers for compressed air and the water coolers are tested in the workshops under actual design conditions.

It is also possible to test the machines under extreme operating conditions, adjusting capacities, pressure, and fluid inlet temperature in addition to ambient temperature.

Dedicated software and new instrumentation created ad hoc enable automatic data acquisition 24 hours a day, meeting the most demanding technical requirements.

Quality

Certifications & Environmental

To supply a high quality product with outstanding reliability is a major objective of us.

At our technical staff ensure that quality standards are maintained and new technologies developed to be applied to our products.

Every day we provide our clients with a modern laboratory and innovative programs for design and planning.

The technical and management procedures applied to all areas of product and production have been certified in accordance with ISO 9001

OUALITY SYSARA

ISO 9001

Since 1989

CERTIFICATE ISO 9001 CERTIFICATE CE PED CERTIFICATE EAC CERTIFICATE 303/2008 Our products are CE marked and in compliance with directive 97/23/CE-PED EAC and other international standards are also available.

Refrigeration Dryers

Premium Dry Air Efficient, Long-term and maintenance-friendly

MAC-T

Flow-rate 0.85 to 1.2 m³/min [Max. pressure 16 bar] Flow-rate 1.8 to 300 m3/min [Max. pressure 14 bar]

LARGE CAPACITY | LOW PRESSURE DROP

The air-to-air and the air-to-refrigerant heat exchangers plus the demister type condensate separator are housed in an unique module. The vertical arrangement ensures the wet compressed air flows down to the automatic drain. The counter flows of compressed air ensure maximum heat transfer.

The large capacity separator is designed to hold condensate also at high humidity in compressed inlet air. And the large cross section of flow channels leads to low air velocities and reduced pressure drop.

<section-header>

Condensate water

AIR/AIR HEAT EXCHANGER

Or economizer, pre-cools the air entered into the dryer, in order to reduce the cooling power required when the air subsequently passes into the evaporator. The air exiting the dryer is heated in the same way in order to prevent condensation from forming in the factory pipes.

EVAPORATOR

The generous dimensions of the air-to-refrigerant heat exchanger plus the counter flow gas streams allow full and complete evaporation of the refrigerant (preventing liquid returning to the compressor).

DEMISTER TYPE CONDENSATE SEPARATOR

The high efficiency condensate separator is located within the heat exchanger module. No maintenance is required and the coalescing effect results in a high degree of moisture separation.

TECHNICAL DETAILS

CONTROL AND PROTECTION DEVICES

All models are fitted with a fan pressure switch to control the refrigerant condensing. MAC30-T and largers, come equipped with some specific devices to protect the components of the unit:

- re-set high refrigerant pressure cut-out (for MAC 80...160-T);
- Iow refrigerant pressure cutout (for MAC 80...160-T);
- re-set high temperature cutout (for MAC 30...160-T), which stops the refrigerating compressor when discharge temperature is too high (e.g. clogged or blocked condenser).

HOT GAS BY-PASS VALVE

The precise and accurate hot gas by-pass valve, which prevents the formation of ice inside the evaporator at any load condition, is a recent development unavailable in the past. The valve is set during final test and no further adjustments are neccessary.

CONTROL PANEL

DMC35 CONTROLLER (Standard)

Operation of the MAC8...160 dryer are monitored by DMC35 electronic controller which indicates the DewPoint temperature digitally, controls the condensate drain valve via a timer and the condenser fan via a probe.

DMC34 CONTROLLER (Optional)

Operation of the MAC8...160-T are controlled and monitored by DMC34 digital controller. Featuring a 3-digit display for the visualization of the DewPoint temperature (in °C or °F) and the dryer total operating hours. DMC34 includes as well the condenser fan control, scheduled maintenance reminder, timer for the condensate drain valve and detection of any dryer malfunction (also reported on the potential free alarm contact)

DMC 24 CONTROLLER

In addition to the characteristics already present in the DMC24 model, this new controller features a new client-protection function, which allows the user to plan maintenance operations, a working meter and a RS485 interface for connection to a PC.

The four temperature probes and pressure transducer record and display the parameters of the dryer when in use and enable the functions AFC (Advanced Fan(s) Control) for the control of refrigerant condensing, and the ASW (Advance Service Warning) to receive advance warning of defects. Control and protective devices are now included in the DMC24 controller and interfaced to the operator through the functions ADS (Advance Draining System) for the control of the zero loss drain and AAL (Advanced Alarm Log). The DMC24 includes the protection for monitoring the sequence of the supply phase and the stopping of the compressor in conditions of high or low refrigerant pressure and/or high discharge temperature.

CONDENSATE DRAIN

MAC8...160-T models are fitted with an eletronic system to drain the condensate interfaced to the controller. Discharge and pause times are adjustable. Drainage group includes also a ball isolation valve and a strainer. A zero loss drain is available as an option.

MAC180-T dryer and largers are equipped with a zero loss drain system, interfaced to the DMC24, to assure the drainage of the condensed water only with no air loss.

CONDENSER

Generous sizing of the condenser ensures maximum performance of the refrigerant circuit and the ability to operate with changes in ambient conditions. Access to the condenser for leaning and maintenence is straightforward. MAC180...3000-T condensers are equipped with a stainless steel protective filter. It can be removed and cleaned. Water cooling option available from MAC180-T model at no charge. Water regulating valve included.

COMPRESSOR

RECIPROCATING TYPE - Models MAC8...23-T are fitted with high efficiency piston compressors sourced from major producers.

EASY MAINTENANCE

The MAC series has been desinged and buit to facilitate any inspection and maintenace operations that may prove neccessary. The hoods are easily removed and offer immediate access to all parts of the system. The clear layout of the components, the simple composition of the refrigerant circuit and the numbering of the wires in the eletrical system, facilitate the operator when carrying out standard controls.

ROTARY - For models MAC30...160-T (with single-phase power supply). This is a new technology applied to refrigerants as an alternative to the traditional piston compressor. Compression of the refrigerant is achieved by way of interaction between a cylindrical stator and a rotating eccentric nucleus. In this method, the parts which come into contact with one another are wear-resistant and therefore more reliable.

SCROLL - From model MAC180-T on, the type of compressor used is the scroll. Widely used in the air conditioning and refrigeration sectors, the scroll compressor performs well and has low energy consumption. Compression of the refrigerant is achieved by way of two concentric coils: one fixed and the other mobile. The scrolls are wear-resistant, highly reliable and guarantee a high level of noise reduction.

Technical Specifications

Flow-rate are based on the following nominal conditions:

Ambient temperature of 35°C, with inlet air at 7barg and 42°C and 3°C pressure Dew Point (-22°C atmospheric pressure Dew Point).

Maximum working conditions: Ambient temperature 50°C, inlet air temperature 70°C and inlet air pressure 14barg (16barg for MAC3 - 12)

Model	Refrig.	Flow-rate at Nominal conditions			Press	ure p	Connection IN-OUT	ections Power S		Dimensions		[mm]	Weight	
	Туре	L/min	m³/h SCFM		bar		[Ø]		[Ph/V/Fr]	А	В	С	[+kg]	
MAC8-T	R134.a	850	51	30	0.04	4	G 1/2″		1/230/50-60	345	420	740	31	
MAC12-T	R134.a	1,200	72	42	0.00	6	G 1/2″		1/230/50-60	345	420	740	34	
MAC18-T	R134.a	1,800	108	64	0.0	7	G 1″		1/230/50	485	455	825	39	
MAC23-T	R134.a	2,500	150	88	0.10	0	G 1″		1/230/50	485	455	825	41	
MAC30-T	R407C	3,400	204	120	0.10		G 1.1/4″		1/230/50	485	455	825	46	
MAC40-T	R407C	4,100	246	145	0.19		G 1.1/4″		1/230/50	485	455	825	53	
MAC55-T	R407C	6,100	366	215	0.13		G 1.1/2″		1/230/50	555	580	885	55	
MAC60-T	R407C	6,800	408	240	0.16	6	G 1.1/2″		1/230/50	555	580	885	63	
MAC80-T	R407C	9,000	540	318	0.08	8	G 2″		1/230/50	555	625	975	92	
MAC100-T	R407C	10,800	648	382	0.13	3	G 2″		1/230/50	555	625	975	94	
MAC120-T	R407C	12,500	750	441	0.08	8	G 2.1/2″		1/230/50	665	725	1,105	141	
MAC140-T	R407C	14,500	870	512	0.1	1	G 2.1/2″		1/230/50	665	725	1,105	150	
MAC160-T	R407C	16,000	960	565	0.1	5	G 2.1/2″		1/230/50	665	725	1,105	158	
MAC180-T	R407C	18,000	1,080	636	0.12	2	DN80-PN16		3/400/50	790	1,000	1,465	240	
MAC210-T	R407C	21,000 1,260		742	0.18	8	DN80-PN16		3/400/50	790	1,000	1,465	242	
MAC250-T	R407C	28,000 1,680		990	0.10	0	DN80-PN1	6	3/400/50	790	1,000	1,465	275	
MAC300-T	R407C	34,000	2,040	1,202	0.1	7	DN80-PN16		3/400/50	790	1,000	1,465	276	
MAC360-T	R407C	39,000	2,340	1,378	0.18	8	DN80-PN16		3/400/50	790	1,000	1,465	311	
MAC400-T	R407C	42,000	2,520	1,484	0.19	9	DN100-PN1	6	3/400/50	1,135	1,205	1,750	463	
MAC500-T	R407C	52,000	3,120	1,837	0.1	1	DN100-PN16		3/400/50	1,135	1,205	1,750	538	
MAC600-T	R407C	63,000	3,780	2,226	0.19	9	DN100-PN16		3/400/50	1,135	1,205	1,750	540	
MAC720-T	R407C	78,000	4,680	2,755	0.18	8	DN100-PN1		3/400/50	1,135	1,205	1,750	612	
MAC900-T	R407C	90,000	5,400	3,178	0.20		DN150-PN16		3/400/50	1,300	1,750	1,810	830	
MAC1100-T	R407C	110,400	6,624	3,900	0.26		DN150-PN16		3/400/50	1,300	1,750	1,810	940	
MAC1200-T	R407C	120,000	7,200	4,238	0.20		DN200-PN16		3/400/50	1,400	2,200	1,870	1,055	
MAC1500-T	R407C	147,200	8,832	5,200	0.26	6	DN200-PN16		3/400/50	1,400	2,200	1,870	1,200	
MAC1800-T	R407C	180,000 10,800		6,537	0.20	0	DN200-PN1	6	3/400/50	1,450	2,165	2,430	1,650	
MAC2200-T	R407C	220,000	13,200	7,769	0.26	6	DN200-PN1	6	3/400/50	1,450	2,165	2,430	1,750	
MAC2400-T	R407C	240,000	14,400	8,476	0.20	0	DN250-PN1	6	3/400/50	1,450	2,455	2,455	1,950	
MAC3000-T	R407C	300,000	18,000	10,594	0.26	6	DN250-PN16		3/400/50	1,450	2,455	2,455	2,100	
On request with 60H	Hz power supply.	1			_	1			1			1		
Correction factor for operating pressure changes:														
Inlet air pressure				barg	4	5	6		7	8	10	12	14	
			F	actor (F1)	0.77	0.8	36 0.93	3	1.00	1.05	1.14	1.21	1.30	
Correction factor for ambient temperature changes:														
Ambient temperature				°C	4	5	6		7	8	10	12	14	
			Factor (F2)			0.77 0.86		3	1.00	1.05	1.14	1.21	1.30	
Correction factor for inlet air temperature changes:														
Air temperature				°C	38	42	2 45		50	55	60	65	70	
			F	actor (F3)	1.11	1.0	00 0.9	2	0.80	0.70	0.61	0.53	0.46	
Correction facto	or for Dew Point of	anges:		1			·							
Dew Point		langes.	۰ <u>۲</u>			2			5	7		1	0	
			Factor (F4)			1.00		1.09		1.19		1.:	1.37	

Refrigeration Dryers

High compressed air inlet temperatures up to 90°C | MHA-T

Flow-rate 0.5 to 7.5 m³/min [Max. pressure 16 bar for MHA8 - MHA18; 14 bar for largers]

AIR DRYER WITH AFTERCOOLER | MHA-T

M-PLUS is keen to respond to the special needs of its customers and has developed a new range of dryers with an intergral aftercooler in order to remove water from pipelines. The dryer range can be selected when the compressed air inlet temperature is greater than 50°C to 60°C, and the floor space is limited. There is no need for a separate free-standing aftercooler which saves both space and installation costs.

M-PLUS has continued using its design philosophy to allow quick and easy access for routine maintenance.

The system provides a pressure dew point of $+3^{\circ}$ C to $+7^{\circ}$ C AT 7 barg working pressure. Since most production processes operate at temperatures well above these levels, your compressed air will be clean and dry at all times.

TECHNICAL DETAILS

CONTROL PANEL

DMC35 CONTROLLER (Standard)

Operation of the MHA-T dryer is monitored by DMC35 electronic controller which indicates the DewPoint temperature digitally, controls the condensate drain valve via a timer and the condenser fan via a probe.

DMC34 CONTROLLER (Optional)

Operation of the MHA-T dryer is controlled and monitored by DMC34 digital controller. Featuring a 3-digit display for the visualization of the DewPoint temperature (in °C or °F) and the dryer total operating hours. DMC34 includes as well the condenser fan control, scheduled maintenance reminder, timer for the condensate drain valve and detection of any dryer malfunction (also reported on the potential free alarm contact)

HOT GAS BY-PASS VALVE

The precise and accurate hot gas by-pass valve, which prevents the formation of ice inside the evaporator at any load condition, is a recent development unavailable in the past. The valve is set during final test and no further adjustments are neccessary.

CONDENSATE DRAIN

MHA-T models are fitted with an eletronic system to drain the condensate interfaced to the controller. Discharge and pause times are adjustable. Drainage group includes also a ball isolation valve and a strainer.

COMPRESSOR

MHA-T are fitted with high efficiency piston compressors sourced from major producers.

TECHNICAL FEATURES

Data refers to the following nominal conditionsAmbient temperature:35°CInlet air temperature:80°CInlet air pressure:7 bargPressure Dew Point:7°C

Maximum working conditionsAmbient temperaure:45°CInlet air temperature:90°CInlet air pressure:14 ba

90°C 14 barg (16 barg for MHA 5 - MHA 18)

Model	Refrig.	Flow-rate at Nominal conditions			Press	Pressure Drop IN-OUT		Power Suppl	/ [imension	iensions [mm]			
	Туре	L/min	m³/h	SCFM	ba	bar		[Ø]	[Ph/V/Fr]	A	В	С	[+kg]	
MHA5-T	R134.a	500	30	18	0.0	7	G 1/2″		1/230/50	650	426	416	33	
MHA8-T	R134.a	800	48	28	0.1	0.11		5 1/2″	1/230/50	650	426	416	33	
MHA12-T	R134.a	1,200	72	42	0.2	0.22		G 1/2″	1/230/50	650	426	416	34	
MHA18-T	R134.a	R134.a 1,800		64	0.3	0.38		5 1/2″	1/230/50	650	426	416	37	
MHA25-T	R134.a	2,500	150	88	0.3	7	G 1″		1/230/50	900	444	440	45	
MHA32-T	R134.a	3,200	192	113	0.4	1	G 1.1/4″		1/230/50	900	444	440	49	
MHA45-T	R407C	4,500	270	159	0.4	5	G	1.1/4″	1/230/50	900	469	511	61	
MHA65-T	R407C	6,500	390	230	0.4	0.43		1.1/2″	1/230/50	1,287	602	583	89	
MHA75-T	R407C	7,500	450	265	0.4	0.45		1.1/2″	1/230/50	1,287	602	583	91	
On request with 60Hz power supply.														
Correction factor for operating pressure changes:														
Inlet air pressure				barg		4		6	7	8	10	12	14	
			Factor (F1)		0.77	0.77 0.8		0.93	1.00	1.00 1.05		1.21	1.30	
Correction facto	or for ambient tem	perature char	iges:											
Ambient temperature			°C		32	32		35	38		40		45	
			Factor (F2)		1.05	1.05		1.00	0.95		0.91		0.83	
Correction factor for inlet air temperature changes:														
Inlet air temper	ature		°C			70			80			90		
			Factor (F3)			1.11			1.0)		0.89		
Correction factor for Dew Point changes:									10					
Pressure Dew Point			۳ <u>۲</u>			5			7		10			
			Fac		0.85			1.0		1.05				

NI-PLUS

MPLUSproductrange_2019

Headquater: M-Plus Filtration Co., Ltd. 71 Soi Ngamwongwan 3, T.Bangkrasor, A.Muangnonthaburi, Nonthaburi 11000 THAILAND.

Tel. +66 (2) 588 5883, 953 5783 to 4 Fax. +66 (2) 591 9388 eMail. info@mplusfiltration.com www.mplusfiltration.com Indonesia branch: **PT.Mitraplus Filter Indonesia** Jln. Sunter Garden Blok B7 No.2, Sunter Agung. Jakarta Utara, 14350 INDONESIA

Tel. +6221 652 2204 Fax. +6221 650 9187 eMail. kevin@mplusindonesia.co.id www.mplusindonesia.co.id

C

•