

DRYER SYSTEMS

NITROGEN GENERATORS Nitropac N01x - N06x

MAIN FEATURES & BENEFITS

Purity Specifications

Nitrogen generator for various purity specifications from 95% to 99,9995% Nitrogen purity at flow rates from 40 I/min to 2,025 I/min

Pre and After Filter

High-efficiency pre and after filters included in generator package to ensure highest efficiency of air separation process and to ensure high purity of Nitrogen outlet flow

Modular Design

Modular expandable design. Entire range based on same adsorber module size. Capacity can be increased by adding more adsorber modules

On-Site gas Generation

Sustainable on-site gas generation, no need for storage of high volumes of bulk gas supply

PRODUCT DESCRIPTION

Typical Application for Nitropac N01x - N06x

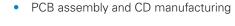
Laser cutting

- Assist gas for cutting process
- Laser beam path purging / Laser welding process

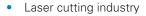
Electronic component assembly

- Soldering processes
- Inert atmosphere for assembly processes packaging and storage of components

Gas assisted injection molding


- Used in injection molding processes to counteract the effects of material shrinking
- Better dimensional control, better surface quality

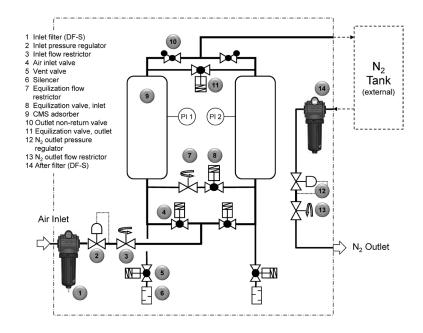
Food & Beverage processes


- Flush and dry bottles prior to filling process
- Modified atmosphere packaging (MAP) inert atmosphere to increase shelf-life

INDUSTRIES

Food & beverage industry

Machine building & plant engineering / construction



Donaldson Filtration Deutschland GmbH

Büssingstraße 1 D-42781 Haan ● Germany Tel. +49 2129 569 0 Fax +49 2129 569 100 CAP-de@donaldson.com www.donaldson.com

PRODUCT DESCRIPTION

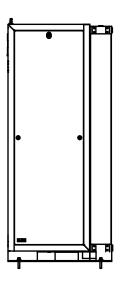
Compressed air is entering the Nitrogen generator at the air inlet and is passing the pre filter (1) where the air is cleaned from particulates and liquid contaminations. With the inlet pressure regulator (2) and inlet flow restrictor (3) it is ensured that the feed air flow is not exceeding the specified flow rate for the specific generator size and Nitrogen purity. Via the air inlet valve (4) the air is lead into the CMS adsorber (9) where Nitrogen and Oxygen are separated. Nitrogen is leaving the adsorber via the outlet non-return valve (10) to the "tank supply" outlet port and is fed into the generator housing at the "tank return" inlet port. Outlet Nitrogen flow is controlled by the N_2 outlet pressure regulator (12) and N₂ outlet flow restrictor (13). In the after filter (14) possibly released particulates from the CMS adsorbent are retained, so clean and pure Nitrogen gas can be used at the N₂ outlet port.

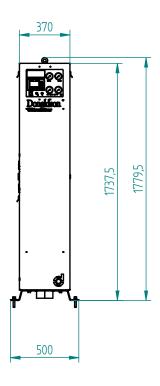
Features	Benefits				
Nitrogen generator based on PSA (pressure swing adsorption) process	Consistent gas purity with no fluctuations; ensures generation of high Nitrogen purity				
Nitrogen generator for various purity specifications from 95% to 99,9995% Nitrogen purity at flow rates from 40 l/min to 2025 l/min in 6 standard sizes	Wide range of Nitrogen purity level and flow rates cover most of the industrial Nitrogen applications				
Generator package incl. high-efficiency filters UltraPleat® S as pre and after filter	Ensures highest efficiency of air separation process and to ensure high purity of Nitrogen outlet flow				
Modular concept with uniform CMS (carbon molecular sieve) adsorber modules and standardized process control components	Service-friendly concept; low number of different wear parts required for maintenance				
Modular expandable design	Entire range based on same adsorber module size. Capacity can be increased by adding more adsorber modules				
All models in cabinet construction	Optimum protection against mechanical damage and dirt				
Nitrogen output pressure and flow control as standard	Ensures reliable constant Nitrogen purity				
Option: Oxygen analyzer and high O2 content alarm	Permanent monitoring and control of Nitrogen purity ensures reliable gas quality				

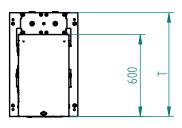
Technical Data	
Operating pressure:	610 barg
Ambient temperature:	5°C 50°C
Medium temperature:	5°C 35°C
Power supply:	100- 240 VAC ±10%, 50-60 Hz
Power consumption:	250 W
Noise level:	59 db (A)
Required compressed air quality acc. to ISO 8573-1 : 2010:	2:2:1

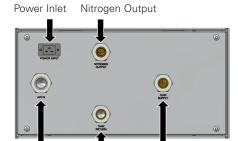
PRODUCT SPECIFICATIONS

	Define required N_2 outlet flow for your application												
Model	O ₂ content	5 ppm	10 ppm	50 ppm	100 ppm	500 ppm	0,1%	0,5%	1%	2%	3%	4%	5%
N01x	Nm³/h	1,8	2,4	3,7	4,1	5,58	7,2	9,3	11,4	15,6	18,3	21,7	24,1
INUIX	l/min	30	40	62	68	93	120	155	190	260	305	362	402
Noov	Nm³/h	3,7	5,0	7,5	8,6	12,0	12,9	18,3	22,8	29,4	34,7	39,1	45,0
N02x	l/min	62	83	125	144	200	215	305	380	490	578	651	750
N03x	Nm³/h	5,7	7,6	10,8	12,5	17,0	19,4	27	31,8	39,9	48,6	54,9	66,0
NUOX	l/min	95	126	180	208	283	323	450	530	665	810	915	1100
NOAv	Nm³/h	6,8	9,0	13,8	16,2	21,7	24,4	35,1	43,5	50,7	61,5	66,9	83,1
N04x	l/min	113	150	230	270	362	406	585	725	845	1025	1115	1385
NOEV	Nm³/h	8,2	10,9	17,1	20,1	27,1	30,5	43,8	53,1	63,9	76,7	85,2	98,9
N05x	l/min	137	182	285	335	452	508	730	885	1065	1278	1420	1649
N06x	Nm³/h	10,4	13,8	20,7	24,3	32,7	36	52,4	63,7	76,8	94,4	102,2	122,7
	l/min	173	230	345	405	545	600	874	1062	1280	1574	1704	2045


Performance data related to nominal conditions: 7 bar g operating pressure, 20...25°C ambient temperature


NITROPAC MODEL RANGES


Nitropac without O ₂ sensor	Nitropac with electrochemical O ₂ sensor (% range)	Nitropac with Zirconium O ₂ sensor (ppm range)			
N013	N014	N015			
N023	N024	N025			
N033	N034	N035			
N043	N044	N045			
N053	N054	N055			
N063	N064	N065			



DIMENSIONS

Connections

Air Inlet Tank Return Tank Supply

Model	T (Depth)	Weight	Inlet / Outlet Connections (Female)				
	mm	kg	Air Inlet	Nitrogen Output	Tank Supply	Tank Return	
N01x	760	197	1" BSP	3/4" BSP	3/4" BSP	3/4" BSP	
N02x	920	282	1" BSP	3/4" BSP	3/4" BSP	3/4" BSP	
N03x	1080	367	1" BSP	3/4" BSP	3/4" BSP	3/4" BSP	
N04x	1240	452	1" BSP	3/4" BSP	3/4" BSP	3/4" BSP	
N05x	1400	537	1" BSP	3/4" BSP	3/4" BSP	3/4" BSP	
N06x	1560	622	1" BSP	3/4" BSP	3/4" BSP	3/4" BSP	

